matlab空心散点检测的示例分析-亚博电竞手机版

matlab空心散点检测的示例分析

这篇文章主要介绍matlab空心散点检测的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

问题描述

有一张这样的图片,如何提取里面的红色圈圈坐标,并且连接这些坐标形成两个封闭的环路?

过程展示

图像导入

oripic=imread('test1.png');subplot(2,2,1)imshow(oripic)

依据rgb值图像二值化

原理就是图中颜色种类比较少,只有红黑白,而红色和白色都是r通道数值较大,因此我们可以利用这一点进行图像分割

%删除红色外的部分并构造二值图graypic=rgb2gray(oripic);graypic(oripic(:,:,1)<250)=255;graypic(graypic<250)=0;%subplot(2,2,2)figureimshow(graypic)

图像腐蚀

对于白色来说是腐蚀,对于黑色来说是膨胀,这一步是为了让那些有缺口的小圆圈将缺口补起来

%图像膨胀,使未连接边缘连接se=[010;111;010];bwpic=imerode(graypic,se);figureimshow(bwpic)

图像边缘清理

就是把和边缘连接的不被黑色包围的区域变成黑色:

%边缘清理:保留圆圈联通区域bwpic=imclearborder(bwpic);%subplot(2,2,3)figureimshow(bwpic)

联通区域查找与坐标均值计算

现在每一个白点都是一个坐标区域,我们检测所有联通区域并计算各个区域的重心即可:

%获取每一个联通区域[lpic,labelnum]=bwlabel(bwpic);%计算每一个联通区域坐标均值pointset=zeros(labelnum,2);fori=1:labelnum[x,y]=find(lpic==i);xmean=mean(x);ymean=mean(y);pointset(i,:)=[xmean,ymean];end%画个图展示一下%subplot(2,2,4)figureimshow(bwpic)holdonscatter(pointset(:,2),pointset(:,1),'r','linewidth',1)

可以看出定位结果还是非常准确的:

圈查找

就以一个点开始不断找最近的点呗,没啥好说的:

n=1;while~isempty(pointset)circlesetind=1;forj=1:length(pointset)disset=sqrt(sum((pointset-pointset(circlesetind(end),:)).^2,2));[~,ind]=sort(disset);ind=ind(1:5);[~,~,t_ind]=intersect(circlesetind,ind);ind(t_ind)=[];if~isempty(ind)circlesetind=[circlesetind;ind(1)];elsecircleset{n}=pointset(circlesetind,:);pointset(circlesetind,:)=[];n=n 1;breakendendendfigureimshow(oripic)holdonfori=1:n-1plot(circleset{i}(:,2),circleset{i}(:,1),'linewidth',2)end

这效果就很美滋滋:

完整代码

functionredpntoripic=imread('test1.png');%subplot(2,2,1)figureimshow(oripic)%删除红色外的部分并构造二值图graypic=rgb2gray(oripic);graypic(oripic(:,:,1)<250)=255;graypic(graypic<250)=0;%subplot(2,2,2)figureimshow(graypic)%图像膨胀,使未连接边缘连接se=[010;111;010];bwpic=imerode(graypic,se);figureimshow(bwpic)%边缘清理:保留圆圈联通区域bwpic=imclearborder(bwpic);%subplot(2,2,3)figureimshow(bwpic)%获取每一个联通区域[lpic,labelnum]=bwlabel(bwpic);%计算每一个联通区域坐标均值pointset=zeros(labelnum,2);fori=1:labelnum[x,y]=find(lpic==i);xmean=mean(x);ymean=mean(y);pointset(i,:)=[xmean,ymean];end%subplot(2,2,4)figureimshow(bwpic)holdonscatter(pointset(:,2),pointset(:,1),'r','linewidth',1)n=1;while~isempty(pointset)circlesetind=1;forj=1:length(pointset)disset=sqrt(sum((pointset-pointset(circlesetind(end),:)).^2,2));[~,ind]=sort(disset);ind=ind(1:5);[~,~,t_ind]=intersect(circlesetind,ind);ind(t_ind)=[];if~isempty(ind)circlesetind=[circlesetind;ind(1)];elsecircleset{n}=pointset(circlesetind,:);pointset(circlesetind,:)=[];n=n 1;breakendendendfigureimshow(oripic)holdonfori=1:n-1plot(circleset{i}(:,2),circleset{i}(:,1),'linewidth',2)endend

其它形状空心散点检测

来波正方形试试:

可以看出效果还是很棒的,当然大家可以根据实际情况自行更改图像腐蚀模板形状,如果散点是其它颜色请自行更改第一步的图像分割条件。

后注:

若是因为点较为密集而导致圈形路径内部白色区域没被清除,可能会将内部区域也算作散点造成错误,解决方法是计算每个联通区域面积并剔除远远大于区域面积中位数的联通区域:

问题出现原因的图片描述:

如图所示种间那一大片区域也被算作散点

更改后代码如下:

functionredpntoripic=imread('test2.png');figureimshow(oripic)%删除红色外的部分并构造二值图graypic=rgb2gray(oripic);graypic(oripic(:,:,1)<250)=255;graypic(graypic<250)=0;figureimshow(graypic)%图像膨胀,使未连接边缘连接se=[010;111;010];bwpic=imerode(graypic,se);figureimshow(bwpic)%边缘清理:保留圆圈联通区域bwpic=imclearborder(bwpic);figureimshow(bwpic)%获取每一个联通区域[lpic,labelnum]=bwlabel(bwpic);%筛掉超大区域pointsizeset=zeros(1,labelnum);fori=1:labelnumpointsizeset(i)=sum(sum(lpic==i));end[~,ind]=find(pointsizeset>10*median(pointsizeset));%计算每一个联通区域坐标均值pointset=zeros(labelnum,2);fori=1:labelnum[x,y]=find(lpic==i);xmean=mean(x);ymean=mean(y);pointset(i,:)=[xmean,ymean];endpointset(ind,:)=[];figureimshow(bwpic)holdonscatter(pointset(:,2),pointset(:,1),'r','linewidth',1)n=1;while~isempty(pointset)circlesetind=1;forj=1:length(pointset)disset=sqrt(sum((pointset-pointset(circlesetind(end),:)).^2,2));[~,ind]=sort(disset);ind=ind(1:min(5,length(ind)));[~,~,t_ind]=intersect(circlesetind,ind);ind(t_ind)=[];if~isempty(ind)circlesetind=[circlesetind;ind(1)];elsecircleset{n}=pointset(circlesetind,:);pointset(circlesetind,:)=[];n=n 1;breakendendendfigureimshow(oripic)holdonfori=1:n-1plot(circleset{i}(:,2),circleset{i}(:,1),'linewidth',2)endend

注:

2016版本及以前可能这句:

disset=sqrt(sum((pointset-pointset(circlesetind(end),:)).^2,2));

会出现数组大小不匹配问题,可以将其改为:

tempmat=repmat(pointset(circlesetind(end),:),[size(pointset,1),1]);disset=sqrt(sum((pointset-tempmat).^2,2));

以上是“matlab空心散点检测的示例分析”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注恰卡编程网行业资讯频道!

展开全文
内容来源于互联网和用户投稿,文章中一旦含有亚博电竞手机版的联系方式务必识别真假,本站仅做信息展示不承担任何相关责任,如有侵权或涉及法律问题请联系亚博电竞手机版删除

最新文章

网站地图